Scientific Visualization, 2025, volume 17, number 2, pages 97 - 109, DOI: 10.26583/sv.17.2.07

Implementation of the Set-Theoretic Subtraction Operation
in Point Calculus

A.A. Bezditnyit
Melitopol State University

1 ORCID: 0000-0003-0528-9731, bezdytniy@gmail.com

Abstract

This paper presents an approach to modeling solid geometric objects and their interac-
tions using the apparatus of point calculus in the context of Boolean operations. The study
explores the implementation of the Boolean subtraction operation for point-based bodies of
various configurations. Parametric point equations are proposed for cuts and holes of differ-
ent shapes, along with the required modeling parameters and their combinations.

Several modeling techniques are introduced, including the creation of holes through pa-
rameter adjustments without modifying the original point equations. This enables the con-
struction of thin-walled structures based on point-defined solids. The method of combining
surfaces into a unified body via a current point, with consistent parameter coordination, is
also discussed. These techniques eliminate the need for intersection computations between
surfaces, thereby avoiding issues such as discontinuities and invalid boundaries. The model-
ing accuracy is directly dependent on the available computational resources and is ensured by
increasing the density of points within the solid object.

To visualize the equations obtained in the work, a point-represented geometric model is
used, which is defined as an analytically defined ordered set of points in Euclidean space,
formed using parametric equations, possessing a controllable internal structure and not re-
quiring explicit topological connections.

Keywords: geometric modeling, set theorists, boolean operations, geometric solid, point
calculus, point solid model.

1. Introduction

Set-theoretic (Boolean) operations play a key role in solid geometric modeling and are
widely used to construct complex objects by combining simpler shapes. The main Boolean
operations include union, intersection, and difference of geometric objects. These operations
make it possible to merge two or more shapes into one, find their intersections, or subtract
one or several shapes from another. Boolean operations are broadly applied in CAD systems,
engineering design, and physical object modeling, and their implementation has been exten-
sively discussed in both domestic [1] and international [2—5] research.

The union operation creates a single object that includes all areas occupied by each of the
original objects. From the set-theoretic perspective, it encompasses all points of the first and
second objects, as well as those in the overlapping region.

The difference operation subtracts one object from another, leaving only the part of the
first object that does not intersect with the second.

The intersection operation produces a new object consisting solely of the region where the
two original objects overlap.

The implementation of Boolean operations in computer-aided design (CAD) systems has
always involved a number of challenges [6—8], such as: continuous recalculation and trim-
ming of surfaces at the intersection points of objects; adjustment of edge and vertex connec-
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tivity to preserve the topological integrity of constructed models; ensuring correct topology to
enable further operations on the models; difficulties in analytically describing complex
shapes resulting from subtraction or intersection; the need for accurate detection of intersec-
tion regions, often requiring substantial computational resources.

Key aspects of Boolean operations in geometric modeling include working with solid repre-
sentations such as boundary representation (B-rep), constructive solid geometry (CSG), or
voxel models. Boolean operations in such systems require precise computation of new
boundaries that arise from intersections. Challenges stem from computational complexity,
rounding errors, and numerical instability in object representation. For example, in B-rep,
Boolean operations significantly affect the object’s topology by altering the structure of faces,
edges, and vertices: the number of these elements may change, edges and vertices may split
or merge, and the creation of valid boundaries and closed surfaces becomes problematic. This
can result in incorrect intersections and invalid geometries.

One significant challenge is the reliable execution of Boolean operations on objects with
complex or imperfect boundaries. For instance, if object boundaries are not closed or violate
B-rep rules, the results may be incorrect. Precision-related issues also arise, especially in cas-
es where objects intersect over small areas or are nearly tangent, which can lead to errors
such as loss of geometry or surface artifacts.

Researchers in geometric modeling have proposed various algorithms to improve the accu-
racy and robustness of Boolean operations. Approaches include procedural and adaptive
modeling techniques that reduce errors by more accurately representing and handling inter-
sections. Recent efforts focus on integrating Boolean operations into modern computing envi-
ronments using GPUs and parallel computing, significantly accelerating performance.

Despite considerable progress, the problem of improving the reliability and efficiency of
Boolean operations remains relevant. Current research aims to develop algorithms that work
with arbitrarily complex objects and scale effectively for large models used in architecture,
mechanical engineering, and medical visualization.

The use of point calculus in modeling Boolean operations on solid objects offers potential
solutions to many of these issues or reduces their complexity. For example, concerns related
to storing and processing topological information do not apply to models constructed using
point calculus [9,10], as all geometric and spatial information is inherently embedded in a
single point-based equation.

It should be noted that within the framework of point calculus, studies focused specifically
on set-theoretic operations have not yet been conducted.

2. Description of Methods for Constructing Solid
Point-Based Models

2.1. Bodies of Revolution

Methods for implementing set-theoretic operations in point calculus are currently under
development, and a unified approach has not yet been established. This section considers
several classes of solids with various configurations of cutouts and holes.

The simplest to implement in point calculus are bodies of revolution with axial holes. Their
construction relies on a geometric scheme in which the current point of the body begins its
movement from the axis. To create such solid models, it is sufficient to adjust the bounds of a
linear parameter responsible for filling the interior of the body. As an example, consider the
cylindrical model discussed in [12]. Its point equation takes the following form:

M =(A-Cucosp+(B—Cusinp+(D—-C)v+C.

The linear parameter u , defined in the range from o to 1, is responsible for filling the in-
ternal space of the cylinder with points. If, for instance, it is limited to the range from 0.5 to 1,
the resulting model will be a cylinder with an axial hole whose diameter equals half the diam-
eter of the original cylinder (see visualization in Fig. 2a). Notably, no modification of the



point equation is required—only the parameter's range needs adjustment. This modeling
technique is suitable for all bodies of revolution that require an axial hole shaped similarly to
the original body. Consequently, it significantly simplifies the task of constructing channel-
like bodies, as discussed in [11], since there is no need to analytically account for the channel
wall, thereby simplifying the resulting equation.

If the shape of the hole differs from that of the body, another modeling technique must be
applied. It involves generating an equation for the hole’s shell and connecting it to the shell of
the primary body using the current point. This method is also suitable when the axis of the
hole or cutout does not align with the body’s axis.

As an example, consider a simple configuration: a conical cutout within a conical body
(Fig. 1). We begin by defining the equation for the cutout. Since the construction of a conical
body has already been described in [12], we will write the equation for the lateral surface of
the conical cutout based on the given geometric scheme:

A =Ap,+Cp B =Bp, +Cp,,C,=Cp. +Dp.
1, =[(4,-C)cosp+ (B, —C)sinp+Clp+C,p=
~[(4p, + Cp, ~ C)cosp + (BP, + Cp, ~ C)sing + Clp+ (P + Dp)p=
=(A-C)p,pcosp+(B—-C)pypsing+(D-C)p.p+C
where @ — is the angular parameter varying from o to 27, and the parameters p ,, p, and
P represent the ratios 4C to AC, B,C to BC and C,C to DC. If the first two parame-

ters are equal, the conical cut will be circular.
Next, we define the lateral surface of the main cone:
T=[(4-C)cosp+(B—C)sing
+Clp+Dp=(A—-C)pcosp+ (2)
+(B-C)psinp+(C—-D)p+D.
It is important to emphasize that the equations (1) and (2) must use the same angular and

linear parameters. Synchronization of these parameters within the surfaces being joined via
the current point ensures a consistent internal point structure and prevents self-intersections.

D

Fig. 1. Geometric diagram of a circular cone with a conical cutout.

We then merge equations (1) and (2) via the current point M , using a linear parameter v,
that ranges from o to 1:



M=Tv+Tv=(A-C)p,pcosp+(B-C)pypsing+(D-C)p.p+C)v+
+(A-C)pcosp+(B-C)psing+(C—-D)p+ D)y =(A-C)p(p,v+V)cosp+ (3)
+(B-C)p(pyv+Vv)sing+(C—-D)v+ pv—p.pv)+D.

The results of modeling using equation (3) are shown in Fig. 1b. The model consists of
90,000 points. The base radius of the cutout is 75% of the base radius of the main cone, and

the parameters p, and p, are equal. Additional results with p, =0,5 and p, =0,75are
shown in Fig. 1c (for clarity, the model is visualized in cross-section).

a) b) c)
Fig. 2. Visualization of a cylindrical body with axial hole a), a circular cone with conical cutout
b), and a cone with elliptical conical cutout c).

Let us now walk through the modeling of a truncated cone with a vertical elliptical axial
hole. The first step is to derive the point equation for the truncated cone (Fig. 3). A similar
problem was discussed in [13], although it used a different parameterization, resulting in a
different equation.

Fig. 3. Geometric diagram of a truncated cone.



We define the current points A4,, B,,C, on segments AD, BD,CD respectively, using a
linear parameter g €[0,1]:
A4 = Aq + Dq; B, = Bq + Dq;C, =Cq + Dg. (4)
This defines the vertices of the moving simplex 4 B,C,, in which the current point of the
ellipse N can be determined as:
N =(4,—C))cosA+ (B, —C))sinA+C, (5)
where 4 €[0,27] - is the angular parameter.

The ellipse is then filled with points by using equation (5) to define the current point N :
N=Ct +Nt=Ct +[(4 —C))cosA+ (B, —C))sinA+C,Jt =
=Ct +(4, —C)tcosA+ (B —C)tsinA+Ct = (6)
=(4, - C)tcosA+ (B, —C)tsinA+C,
where t €[0,1] - is a linear parameter.
We now define the conical body by substituting equations (1) and (3):
M =(Aq + Dg—Cq — Dg)tcos A+ (Bg + Dg—Cq — Dg)tsin A + )
+CF + Dg =(A—C)gtcos A +(B—C)gtsin A+ (D —C)q +C. 7
Equation (7) represents one of the possible formulations for the cone. The parameter ¢

corresponds to height, and the same equation can also be used to model a truncated cone by
setting the parameter g range not from o to 1, but from 0 to the ratio of the height of the

truncated cone to the height of the full cone. It should be noted that for the correct construc-
tion of the model it is necessary that the “zero” value of the parameter g defines the lower
plane of the cone

Let us complicate the task and model a truncated cone with a vertical axial elliptical hole

(Fig. 4).

D

Fig. 4. Geometric diagram of a truncated cone with vertical axial elliptical hole.

The modeling process resembles the previous example, but here the elliptical cutout must
be defined by finding points 4 , and B, using the parallel translation formula:



A =Ap+Cp+C, -C.

(8)
B,=Bp+Cp+C —C.

AC

p .
AC

In equations (8), the C| point is the current point of the cone axis, which makes it possible

where p =

to form a moving simplex ApoCI [14] for constructing a vertical hole. Next, we determine

the current point of the elliptical hole with subsequent substitution of (4) and (8):
O=(4,-C)cosA+(B,—C)sind+C, =

=(A-C)pcosA+(B-C)psinA+(D—-C)g+C. ©)
where A €[0,27] — is the angular parameter.
Next, we define point N using (4):
N=(4-C)cosA+ (B —-C)sinA+C, = (10)

=(A-C)gcosA+(B-C)gsinA+(D-C)g+C,
We then define the point M on segment NQ using (9) and (10):
M =Nt+Qt =[(A-C)gcosA+(B-C)gsinA+(D-C)qg+Clt+
H(A-C)pcosA+(B-C)psinA+(D—-C)g+C)]t = (11)

=[(4-C)cosA+(B—-C)sinA](gt+ pt )+(D—-C)g+C,
where ¢ €[0,1] - is a linear parameter.

Equation (11) gives the point-based equation for a truncated cone with an axial elliptical
hole (see Fig. 5). For this equation to work correctly, a proper relationship must be estab-
lished between the fixed parameter p and the maximum value of the variable parameter g :

Max(g)=1-p.

Fig. 5. Point-based model of a truncated cone with axial elliptical hole.

If it is necessary to make a cutout, the shape of which will differ from the shape of the rest
of the body, then it is necessary to make changes in the geometric scheme. It is necessary to
write an equation of the inner surface of the body and connect it with the outer surface, hav-
ing previously synchronized their parameters. Synchronization of parameters is an integral
part of this method of constructing geometric solid objects, since in the event of a violation of



the direction or step of the parameters of the objects being linked together, the geometric
properties of the resulting point body will be violated or completely lost.

For example, let us create an analytical description of a spherical body with an elliptical in-
ternal cutout (Fig. 6).

Fig. 6. Geometric diagram of an elliptical body with a cutout

The internal cut is defined by points lying on the axes of the local simplex ABCD :

A =A4p,+Cp;
B, = Bpy + Cpy;
D, =Dp,+Cp,.

We will take the equation of the elliptic surface from [15]. Moreover, for both the internal
and external bodies the equations will be the same, except for the support points. The angular
parameters will also coincide, since the points in the bodies must be filled in the same direc-
tion and order.

N=(A4-C)cosAcosp+(B—C)sinAcosp+(D—C)singp+C,
N, :(ApA +Cp, —C)cos/lcosgo+(BpB +Cp, —C)sin/1005(p+
+(Dp, +Cp, —C)sing+C =
=(A-C)p, cosdcosp+(B—-C)p,sinAcosp+(D—-C)p,singp+C.

where A €[0,27]and ¢ € [—%,g] .

After obtaining the equations of the shells, it remains to connect them using the current
point M by means of a linear parameter u €[0;1]:

M =[(A-C)cosAcosp+(B—C)sinAcosp+(D—C)sing+Clu +
H(A-C)p, cosAcosp+(B—-C)pgsindcos@+(D—-C)p,sing+Clu =
=(A4-C)(1-up,)cosAcosp+(B—C)1-up,)sindcosp +

+(D-C)(1-up,)sing+C.

The simulation results are presented in Fig. 7.



Fig. 7. Point solid model of a sphere with an elliptical inner cutout

The peculiarity of this method of constructing solid geometric objects is the ability to cre-
ate the internal structure of point bodies of revolution without additional changes in the ana-
lytical description, but only by means of working with parameters that determine the internal
structure of the body of revolution.

2.2, Polyhedral Bodies

From the standpoint of creating cutouts and holes in point calculus, polyhedral bodies are
more complex due to the specifics of their parameterization. This complexity primarily arises
because bodies of revolution are usually based on elliptical equations that involve a single an-
gular parameter. Moreover, in the case of rotational solids, it is possible to first generate the
surface and only then fill its interior with points using an additional parameter.

The structure of polyhedral bodies in point calculus is fundamentally different. These bod-
ies are formed by linking several straight-line segments using multiple parameters—
bypassing the stage of creating a separate surface. As a result, the equation immediately de-
scribes a body defined by three parameters. This imposes certain limitations on the configu-
rations of cutouts and holes that can be created in such bodies. The same applies to polyhe-
dral holes or cutouts in bodies of revolution.

As an example, consider the creation of a prismatic axial hole inside a cylindrical body (see
Fig. 8).

The equations for cylindrical and prismatic bodies are known from [12]. To construct this
configuration, the inner surface of the cutout must be connected to the outer surface via the
current point. However, there is a challenge in defining the inner surface: during the con-
struction of prismatic bodies, an explicit equation for their lateral surface is not obtained at
any stage.

Nevertheless, it is still possible to extract the point array that represents the lateral surface
of a prismatic (or any polyhedral) body. This can be done by generating the full set of body
points and then selecting those corresponding to the desired parameter values. The specific
parameter values depend on how the body is parameterized. This approach is feasible if a
point database is available. However, obtaining an independent analytical description of the
full lateral surface—or the complete surface—of a polyhedral body is currently not achievable
within the framework of point-based solid modeling.

Therefore, to derive analytical descriptions for various configurations of cutouts in such
bodies, it is proposed to divide the body into separate parts during the design phase (based on
the number of faces in the body or in the cutout). In the case shown in Fig. 8, this results in
four segments.



Fig. 8. Geometric diagram of a cylindrical body with a square axial hole

Let us assume a spatial simplex ABCD is given, and on its sides AC and BC - the points
F and G are defined, representing the hole’s geometry:

F = Ak + Dk ;G = Bk + Dk.

The equation for the lateral surface of the cylinder is written as:
E=[(A-D)cosA+(B—D)sinA+ D]t +
H(A+C-D—-C)cosA+(B+C—-D-C)sinA+Clt=
=[(A—D)cosA+(B—D)sinA+ D]t +[(A—D)cosA+(B—D)sinA+CJt=
=(A-D)t cosA+(B—-D)tsinA+ Dt +(A—D)tcosA+(B—D)tsinA+Ct=
=(A4—-D)cosA+(B—D)sinA+(C—-D)t+D,

where ¢ €[0;1], 41 €[0;27].
To generate the body, we link the face of the hole /GG, F, with the corresponding segment

of the cylindrical surface using the current point, and coordinate the parameters responsible
for forming both the cylinder segment and the wall of the cutout.

We define point 7 in the straight line and connect it to point £ on the arc 4B
N=Et+Tt =[(A—D)cosA+(B—D)sinA+ D)t +[F(1—sind)+ GsinA]t =
=[(A—-D)cos A+ (B — D)sin A + D]t +[(Ak + Dk )(1—sin A) + (Bk + Dk )sin A]f .

This results in a point-filled surface ABGF . The parameter sinA used for the current

point 7'was chosen to synchronize the parameterizations of the arc and the line. Also,

V4
Ae[0;—].
€[ 2]

Next, we define the top face of the body 4, B,G, F :
N, =Et+Tt =[(A—D)cosA+(B—-D)sin A+ Clt+[Fsin A+ G,(1-sin )]t =
=[(A—D)cosA+(B—D)sinA+Clt+[([A— D}k +C)(1—-sin )+
+([B— D]k + C)sin A]t.
Finally, we connect the two obtained points N and N, using a parameter v:
M =Nv+Ny=(A—-D)(tcosA+kt(1-sind))+(B—D)(tsinA+kt sin1)+(C—-D)v+D.



Fig. 9: Point-based model of a circular cylinder segment with a prismatic cutout

To form the complete body, the segment shown in Fig. 9 can be duplicated using a circular
array. If the hole is offset, a separate equation must be generated for each segment (the equa-
tions will follow the same structure but differ in the constants that define the reference points

for the hole).
Now, consider an example of a quadrilateral prism with an elliptical cutout. Let us define a

prism in a spatial simplex 4BCD with an elliptical hole.

Fig. 10: Geometric diagram of a quadrilateral prism with an elliptical hole
We define the locations of points /' and G on lines AD and BD, respectively.

F = Ak + Dk;G = Bk + Dk
It should be noted that if the same parameters are used for points /' and G, the hole will
have a circular shape. If different parameters are applied, the hole becomes elliptical.
Next, we determine the current point N on one plane ABGF':
N=Et+Tt = At(1-sinA)+ Btsin A + (F — D)t cosA+ (G — D)t sin A+ Dt =
=(B—A)tsin A+ (A—D)(kt cosA+1t)+(B—D)kt sin 1+ D.
And then define the current point V, on the second plane 4, B,G, F;:
N, =Et+Tit =(A+C—-D)t(1-sind)+(B+C—D)tsin 1+
+(F,—C)t cos A+ (G, - C)t sinA+Ct =
=(A—D)[t—tsinA+kt cosA]+(B—D)sinA[t+kt ]+ C.



The final body equation is constructed by connecting points N and N, :
M =Nv+Ny=(B—-A)tsinA+(B- D)sin A(kt +vt)+
+(A—D)(t —vtsin A+ kt cosA)+(C—D)v+ D.
All parameters used in these equations are analogous to those described earlier for the cy-

lindrical body with a prismatic cutout. The construction principles and parameter coordina-
tion are also the same. An example of visualization is shown in Fig. 11.

Fig. 11: Point-based segment of a quadrilateral prism with an elliptical hole

To process parametric equations, the author's Point Calculus Software was used (certificate
of state registration of the computer program No. 2025610353). The calculation results were
exported to .DXF format, after which the resulting arrays of points were visualized using
freely distributed software CloudCompare (cloudcompare.org).

3. Conclusion

The conducted study led to the following conclusions:

1. Novel methods for constructing solid models using point calculus have been proposed.
Parametric point equations were derived for several types of solids, including rotational and
polyhedral bodies with various configurations of holes and cutouts. The resulting models
were visualized using a point-based geometric representation.

2. The features of parameterization for the generated models were analyzed, with particu-
lar attention to parameter interactions.

3. A method was proposed for creating holes and cutouts in rotational bodies without
modifying their equations. The geometric configuration of the model is adjusted through pa-
rameter manipulation rather than analytical changes, which significantly reduces the com-
plexity of the model's mathematical description and optimizes computational resource usage.

4. The described modeling techniques allow for flexible geometric modifications without
increasing the amount of data required for storage and processing. All resulting models are
defined by compact parametric point equations that encode both the external and internal
structure of the object, as well as its spatial orientation. These results open the way toward
modeling more complex configurations of solid bodies using point calculus.

5. Visualization of the obtained results was carried out using a point-represented geomet-
ric model.
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